Fast Non-Monotone Submodular Maximisation Subject to a Matroid Constraint
نویسندگان
چکیده
In this work we present the first practical ( 1 e − ǫ ) -approximation algorithm to maximise a general non-negative submodular function subject to a matroid constraint. Our algorithm is based on combining the decreasing-threshold procedure of Badanidiyuru and Vondrak (SODA 2014) with a smoother version of the measured continuous greedy algorithm of Feldman et al. (FOCS 2011). This enables us to obtain an algorithm that requires O( 2 ǫ4 ( d̄+ ̄ d d̄ 2 log2(ǫ )) value oracle calls, where n is the cardinality of the ground set, r is the matroid rank, and ̄ d, d̄ ∈ R are the absolute values of the minimum and maximum marginal values that the function f can take i.e.: − ̄ d ≤ fS(i) ≤ d̄, for all i ∈ E and S ⊆ E, where E is the ground set. The additional value oracle calls with respect to the work of Badanidiyuru and Vondrak come from the greater spread in the sampling of the multilinear extension that the possibility of negative marginal values introduce.
منابع مشابه
Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMaximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملSubmodular Maximization over Multiple Matroids via Generalized Exchange Properties
Submodular-function maximization is a central problem in combinatorial optimization, generalizing many important NP-hard problems including Max Cut in digraphs, graphs and hypergraphs, certain constraint satisfaction problems, maximum-entropy sampling, and maximum facility-location problems. Our main result is that for any k ≥ 2 and any ε > 0, there is a natural local-search algorithm which has...
متن کاملOn maximizing a monotone k-submodular function subject to a matroid constraint
A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also pro...
متن کاملMaximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.06053 شماره
صفحات -
تاریخ انتشار 2017